液压同步提升是利用液压传动系统将重物提升就位的方法。液压传动系统主要包括:液压泵站、穿心式液压提升器(以下简称提升器)和钢绞线。其中,液压泵站是动力设备,提升器是执行设备,钢绞线是柔性索具。
1、提升器
提升器是液压提升的关键设备,它由上锚具(包括紧锚弹簧、夹片、锚环和上锚缸)、下锚具(包括紧锚弹簧、夹片、锚环和下锚缸)、地锚和主液压缸四大部分组成。其工作过程为:提升重物上升时,上锚具夹紧钢绞线,然后主液压缸伸缸,带动上锚具和钢绞线向上运动,重物随之上升。主液压缸伸缸到位后,下锚具夹紧钢绞线,主液压缸缩缸,将上锚具上的负载转移到下锚具上,松开上锚具继续缩主缸,直至主液压缸缩缸到位,紧上锚,至此将重物提升了一个液压缸行程的高度,提升器连续不断重复以上步骤就可将重物提升到位。逆向重复上升时的步骤,便可实现重物的下降作业。提升器可以因地制宜,根据提升重物的重量和面积不同,提升器内的钢绞线可以有一根到几十根不等,提升器的提升重量也从十几吨到上千吨不等,提升位置可以有单点到几十个提升点不等。这样,一方面设备的;另一方面液压设备的扩展组合能力使液压提升不受重物的重量、高度、跨度和面积的限制。
提升器上、下锚具具有逆向运动自锁性,上、下锚具能够锁紧钢绞线,提升过程 。同时,构件可在提升过程中的任意位置能长期锁定,可达数月之久。
提升设备体积小、重量轻、承载能力大,适宜于在狭小空间或室内进行大吨位构件提升。
提升设备自动化程度高,操作方便灵活,能够自行连续(不间断)工作。液压同步提升施工技术采用行程及位移传感监测和计算机控制,通过数据反馈和控制指令传递,可全自动实现同步动作、负载均衡、姿态矫正、应力控制、操作闭锁、过程呈现和故障警报等多种功能。
2、液压泵站
一台提升器包括主液压缸、上锚缸和下锚缸三个油缸,主液压缸用来提升重物,国内额定压力一般是25MPa;上、下锚缸用来夹紧和松开钢绞线,额定压力一般是8MPa。液压泵站的流量根据泵站配置设备的数量和提升速度来确定,一般一台泵站可配置数台提升器,提升速度在3~20m/h之间。
两种不同调速方式的液压系统,一种是使用电液比例阀的液压系统,另一种是采用变频器的变频调速液压系统。常用电液比例阀有电液比例调速阀、电液比例方向阀和电液比例流量阀。电液比例调速阀或电液比例方向阀通过控制流量调整各提升点的速度,及时调整位置误差,这种控制方法,适应性强,能耗损失较大;采用恒压变量泵加电液比例流量阀成本较高,但,能耗少,系统发热少;采用变频器控制电机转速,从而改变液压泵输出流量达到同步控制目的,这种控制方法精度相对较低,适用于控制速度较低的场合,通常一台变频器控制一台泵和一个点,所以泵站结构较大。
液压提升设备由行走机构,液压机构,电动控制机构,支撑机构组成的一种升降机设备。液压油由叶片泵形成 的压力,经滤油器、隔爆型电磁换向阀、节流阀、液控单向阀、平衡阀进入液缸下端,使液缸的活塞向上运动,提升重物,液缸上端回油经隔爆型电磁换向阀回到油箱,其额定压力通过溢流阀进行调整,通过压力表观察压力表读数值。
液压提升设备串电阻调速方式:交流电机因为其结构简单、体积小、重量轻、寿命长、故障率低、维修方便、价格便宜等诸多优点得以广泛应用,但交流单机、双机拖动的提升系统以前采用绕线电机转子串电阻的调速方式,现已基本淘汰完,此调速方式存在的问题如下:
(1)液压提升设备在减速和爬行阶段的速度控制性能差,经常造成停车位置不准;
(2)液压提升设备频繁的起动、调速和制动,在转子外电路所串电阻上产生相当大的功耗;
(3)电阻分级切换,实现有级调速,设备运行不平稳,引起电气及机械冲击;
(4) 发电时,机械能回馈电网,造成电网功率因数低。尤其在供电馈线较长的应用场合,会加大变压器、供电线路等方面的投资;
(5)低速时机械特性较软,静差率较大;
(6)起动过程和调速换挡过程中电流冲击大,制动不不,对 能量处理不力,斜井提升机运行中调速不连续,容易掉道,故障率高;
(7)中高速运行震动大,性较差;
(8)接触器频繁投切,电弧触点,影响接触器的寿命,设备维修成本较高;
(9)绕线电动机滑环存在的接触不良问题,容易引起设备型事故;
(10)设备体积大,发热严重使工作环境恶化(甚至使环境温度高达60℃以上);
(11)设备维护工作量大、维护费用高,故障率高。矿用生产是24h连续作业,即使短时间的停机维修也会给生产带来很大损失。