一、采用重型构件液压同步提升系统的设计方法
液压提升系统,提升方案应充分考虑因被提升结构变形、安装误差、吊点的微小变化、提升过程被提升构件的晃动等不同的受力状态、由于被提升结构重量的巨大,这些相对垂直荷载较小的水平分量对基木依据构造设计的水平抗力构件仍是巨大的、设计时应充分考虑各种异常状态,特别是巨大的被提升荷载有可能产生的其他方向任何分量。
(2)支撑系统受力模型可能存在多种状态。对于直接提升系统如液压千斤顶、钢绞线等,其所受荷载基木是明确的,但是需要考虑被提升结构变形情况、同步控制的水平、提升点布置的位置和数量。
(3)支撑系统设计除了考虑理论受力状态荷载分布,还应充分考虑各种异常情况影响,如拼装误差造成的重心偏移、拼装位置偏差造成的提升荷载方向改变、提升过程产生的纵向和横线震动等,这些偏差的数值往往直接决定部分支撑构件的设计和选择。
(4)被提升结构(设备)重及附件重、荷载计算设定的形心位置并不准确,而且由于加工误差、施工荷载等的不均衡,进一步加剧了这种不平衡,方案设计也有相应的储备和对策。
(5)方案审查时还应确认针对被提升结构、提升结构变形造成的荷载重分布。
二、液压提升泄油式阀泵并联伺服控制系统
旁路控制的泵一马达速度伺服系统,系统中,伺服阀装在旁路上,造成一旁路泄漏,但泄漏量不大。信号输入伺服阀可控制其开度,即控制旁路泄漏量的大小。
当马达轴上的负载转矩增加时,系统的压力加高,泵、马达和旁路泄漏均增加,马达的转速降低,此时测速装置测出速度信号,通过比较环节形成误差信号,经调节器输入伺服阀,伺服阀将开度关小,限制旁路泄漏,使马达的转速回升到原来的值。液压顶升装置这类泵阀伺服系统具有如下特点:
1)由于伺服阀直接控制流量,液压提升设备响应性比泵控马达系统要好,又由于伺服阀装在旁路,只流过少量的流量,因此可以选用流量很小的伺服阀,能提高响应速度;
2)系统压力随负载大小变化,除泵、马达和少量旁路泄漏外,无大量的压力油损耗,因此系统的,但其效率低于泵控伺服系统。另外,马达轴上的负载增加后,利用控制手段使伺服阀的开度减小,使泵、马达和旁路泄漏的大小与负载没有增加时基本相同,效率不会因施加负载而降低;
3)设置泄漏虽然消耗了部分能量,但增加了系统阻尼,有利于提高稳定性,减少超调量和调整时间;
4)如不加控制,开环旁路系统的速度刚度较小,而使用控制手段后,就解决了这一问题,并达到满意的效果;
5)因伺服阀装在旁路,不需要单独的油源,减少了功率损耗和设备费用。
总之,这类系统兼有阀控节流控制系统性好和泵控容积式控制系统功率损耗小、的优点。但系统的动静态刚度较低,其稳态速度误差也较大,只有合理设计控制器后才能应用于工程中。